THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/2

ADVANCED MATHEMATICS 2

(For Both School and Private Candidates)

Time: 3 Hours

Wednesday 12 May 2004 p.m.

Instructions

- 1. This paper consists of sections A and B.
- 2. Answer all questions in section A and four (4) questions from section B.
- 3. All necessary steps in answering each question must be shown clearly.
- 4. Mathematical tables, mathematical formulae, slide rules and nonprogrammable pocket calculators may be used.
- 5. Cellular phones are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).

This paper consists of 4 printed pages.

- SECTION A (60 marks)
- Answer all questions from this section showing all necessary steps and a_{nswets} Use logarithms to evaluate to three significant figures:

we walk to evaluate to three significant figures:
$$\left(\frac{\ln 32 - \sqrt[3]{0.06e^2}}{\tan 55^\circ 36}\right)^{0.5}$$
(Hint: $\ln x = \log x + \log e$)

- Using a non programmable scientific calculator, find the value of $\sqrt{\frac{e^5 \sqrt{\ln 32} \log 32}{\sqrt{3}}}$ (b)
- Using letters and logical connectives, write the following statement. "If x is less than zero then it is not positive." (02 m (02 ma)
 - (b) Using the statement given in question 2.(a), find and simplify:
 - the contrapositive of its inverse.
 - the converse of its contrapositive. (iii)
- comment on the resulting statements in 2.(b)(i) and 2.(b) (ii) above. (04 marks
 - Find the centre and radius of the circle given by the equation $x^2 + y^2 + 4x 8y + 4 = 0$. Find the length of the tangent from the point (3,8) to the circle whose equation is given in
- (a) Prove that $\frac{\sin(A-B)}{\cos A \cos B} + \frac{\sin(B-C)}{\cos B \cos C} + \frac{\sin(C-A)}{\cos C \cos A} = 0$ (03 marks)
 - (b) Solve for x if $tan(cos^{-1}x) = sin(tan^{-1}2)$
- (02 marks) 5. (a) Using synthetic division find the value of c given that the polynomial $p(x) = x^3 + cx^2 - 2cx + 4$ is divisible by x - 1. (04 marks)
 - The expression $x^3 + ax^2 + bx + c$ gives the same remainder when divided by x + 1 or x 2. (02 marks)
- (ii) Find c if the expression leaves the remainder of 7 when divided by x 1. (04 marks) 6. y (a) Show that the equation $3y^2 - 10x - 12y = 18$ represents a parabola.
 - Find the equation of the tangent through the point $\left(\frac{3}{\sqrt{2}}, 2\right)$ on the ellipse

(03 marks)

- Find the values of z for which $12 \cosh^2 z + 7 \sinh z = 24$
- (04 marks)

If y = A cosh nx + B sinhnx, prove that $\frac{d^2 y}{dx^2} = n^2 y$.

- (02 marks)
- The table below represents the height taken to the nearest centimeter of 40 orange trees in a garden.

Height (cm)	131 – 140	141 – 150	151 - 160	161 170	THE TO SERVE	ACT DE PARA	
Number of trees	2	141 – 150	7	101 – 170	171 – 180	181 – 190	191 – 200
	3			11	9	5	1

- Using the assumed mean A, calculate the actual mean height. (a)
- Calculate the Standard deviation of the distribution. (b)

- (06 marks)
- A factory finds that on average 20% of the bolts produced by a given machine will be defective for certain specified requirements. If 10 bolts are selected at random from the day's production of this machine, find the probability that:
 - 2 or more will be defective.
 - More than 5 will be defective.

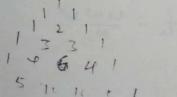
- (06 marks)
- Express sin 50 and cos 50 in terms of sin 0 and cos 0 and hence show that:

$$\tan 5 \theta = \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 + 5 \tan^4 \theta - 10 \tan^2 \theta}$$

(05 marks)

Write the complex number z = x + iy in polar form.

(01 mark)


SECTION B (40 marks)

Answer four (4) questions from this section showing all necessary steps and answers.

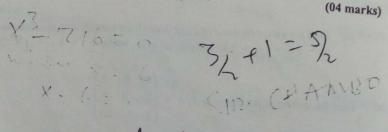
- 11. (a) Given the equation of a line as $\frac{x+1}{4} = \frac{y-2}{-1} = \frac{z+0}{5}$, find the equation of the plane that contains the point (1/2, 0, 3) and is perpendicular to the line which is both parallel to the vector 2i - j + 3k and passes through the point (5, -2, 4).
 - (b) (i) The position vectors of points P and Q are 3i + j + 2k and i 2j 4krespectively. Find the equation of the plane through B and perpendicular to AB. (04 marks)
 - (ii) Find the vector equation of a line through the point A with position vector $\underline{a} = 3\underline{i} - 2\underline{j} + 3\underline{k}$ and parallel to the vector $\underline{b} = 4\underline{i} + \underline{j} - 2\underline{k}$;

(02 marks)

12. (a) Find the inverse of the matrix A if $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -3 & -2 \\ 3 & 1 & -1 \end{pmatrix}$

(b) Use the inverse obtained in question 12.(a) above to solve the system of the following

$$x+2y+3z = 6$$
 $2x-3y+2z = 14$
 $3x+y-z = -2$
 $1-4+6=6$
 $2+6+6=14$
 $3-2-3=-2$ (05 marks)


- Find the equation of the chord of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ joining the points (a sec θ , b tan θ) and (a sec α , b tan α). Hence deduce the equation of a tangent at the point (a sec θ , b tan θ). (05 marks)
 - Show that the line 3x 4y = 5 is a tangent to the hyperbola $x^2 4y^2 = 5$ and find the point
- 14. (a) Using the definitions of cosh x and sinh x, show that:
 - $\cosh^2 x \sinh^2 x = 1.$

(ii)
$$\cosh^{-1}x = \pm \log(x + \sqrt{x^2 - 1})$$
. (05 marks)

- (b) Calculate the minimum value of the function $y = 3 \cosh x + 2 \sinh x$. (05 marks)
- ¥ 15. Simplify the following using the laws of algebra of propositions. (a)
 - (i) PV(PAq)
 - (ii) $\sim (PVq) V (\sim P\Lambda q)$ (08 marks)
 - Translate the following argument into symbolic form. Hence show that the argument is (b)

"On my daughter's birthday, I bring her flowers. Either it is my daughter's birthday or I work late. I did not bring my daughter flowers today. Therefore, today I worked late".

- 16. (a) (i) Find: $\int \frac{xe^{x}}{(1+x)^{2}} dx.$ (03 marks)
 - Evaluate $\int_{1}^{3} x \sqrt{2x+3} dx$. (03 marks)
 - The finite region bounded by the y axis, the line y = 27 and the curve $y = \frac{1}{8}x^3$ is rotated (b) completely about the y axis. Find the volume swept out.

